
Homework 4 – AS.171.627 – Zakamska

AKA “MHD madness” – title courtesy of Duncan W.

1. Proper motion errors (2 points). Suppose that N � 1 measurements of the position

of a star relative to several quasars are made at equal intervals �t, all with the same uncertainties.

The total timespan or the baseline of the observations is therefore T = N�t. Assuming that

the trigonometric parallax is negligible, how does the accuracy of the resulting proper motion

determination scale with the length of the baseline? In other words, if the accuracy of the proper

motion is ✏ / T�a, what is a?

2. Solar rotation speed (4 points). (a) Harris’s catalog of Galactic globular clusters we

used in a previous homework gives the Galactic latitude and longitude of each cluster (in Part I)

as well as its radial velocity relative to the Local Standard of Rest (in Part III). Use these data

to make a kinematic estimate of the rotation speed of the LSR, assuming that the cluster system

itself does not rotate. Your result should include error bars. This is a kinematic estimate, not a

dynamical estimate, i.e., you do not need to use Newton’s laws. Does your result agree with the

recent estimates? If not, what do you think may be the problem with this method? (b) Using

the data in Part II of Harris’s table, estimate the distance to M31, assuming that the luminosity

function of globular clusters is the same in the two galaxies and that the mean apparent magnitude

of the M31 globular clusters is hmV i = 17.1.

3. Ideal Magnetohydrodynamics (5+1+1+3 points). The equations of non-relativistic

ideal MHD can be found in many places (e.g., on Wikipedia). Unfortunately, many places give

them in SI rather than Gaussian (cgs) units. For compatibility with astrophysics literature I highly

recommend the latter, so you need to be careful where you look. (You will also discover to your great

dismay that some sources redefine the magnetic field to get rid of the 4⇡ terms, Bnew = BGauss/
p
4⇡,

which is yet a third set of units, so watch out for this.) Ideal MHD describes the behavior of fluids

in magnetic fields, with a great simplification that the fluid is assumed to be infinitely conductive.

This is an excellent approximation for many astrophysical plasmas, for example quasar accretion

disks. Every fluid element consists of electrons and positively charged nuclei, so its average charge

is neutral, but if you apply an electric field to such fluid element, electrons and nuclei immediately

start flowing in opposite directions with essentially no resistance and screen the field out.

Let’s write out the equations of non-relativistic ideal MHD in Gaussian (cgs) units. We start

with the continuity equation, and it is the same as the one we discussed in class:
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Euler equation acquires an Amper force term which should be familiar to you from basic E&M

(just remember that it is per unit volume):

⇢

✓
@

@t
+ (vr)

◆
v =

j⇥B

c
�rp� ⇢r�. (2)



– 2 –

Here j is the current density (the standard current flowing through the wires that you used in basic

E&M is I = current density times the cross-section of the wire). We have neglected the electrostatic

force here because we’ve assumed that the plasma or the fluid has 0 net charge density. In addition,

to describe the E&M fields we have three of the four Maxwell’s equations which also should be

familiar:
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It turns out that in the non-relativistic case the displacement current term can be neglected. If you

don’t remember what this is, look it up and cross it o↵; we may discuss why this term is negligible

at some later point, but for now let’s just get rid of it.

The last Maxwell’s equation connects the electric field with the charge density, which would

then need its own equations which would be a big mess. Fortunately, under the assumptions of

ideal MHD the electric field is screened because of the infinite conductivity in the frame co-moving

with the fluid:

E+
v

c
⇥B = 0. (6)

This equation replaces the 4th Maxwell’s equation.

The final equation that wraps the system is the equation of state:

P = P (⇢). (7)

These are the equations that are solved numerically when people study the behavior of non-

relativistic plasmas in magnetic fields.

Let’s consider a steady-state solution which is homogeneous fluid ⇢0 at rest v0 = 0 with no

gravity � = 0 and uniform magnetic field B0 threading the fluid. B0 is directed for example along

the z-axis (although you should try to keep the vector notation as long as possible). In addition

we will consider the following simplifications:

• We will consider a fluid that is incompressible: its density is always ⇢0 (so ⇢1 = 0 in pertur-

bation analysis). This is for example a good approximation for liquid metals that are used in

labs to study MHD experimentally: metals are highly conductive, nearly incompressible, and

if the metal is liquid at room temperature it makes the experiment set up that much easier.

For example, Princeton Plasma Physics Lab had an MHD turbulence experiment filled with

liquid gallium.

• We will ignore the pressure terms in the Euler (or momentum) equation, so we will consider

them subdominant to all other forces.
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• We will drop the displacement current which is unimportant in non-relativistic motion.

• We will only consider the perturbations in which B1 ? B0.

(a) First, determine to your satisfaction that the steady-state solution is in fact a solution to

all the equations. Now let’s see if this solution is stable. Conduct the linear stability analysis of this

solution to perturbations with B1 ? B0. Derive the dispersion relation for these perturbations,

find their phase and group velocity. Which way are they propagating? Which way are the fluid

elements moving? Are these waves longitudinal or transverse? (I.e., are the fluid elements moving

parallel or perpendicular to the direction of the wave propagation?) Are they growing or decaying?

What are they called? (Hint: there are no curvy derivatives anywhere in this problem! If you need

to use coordinates, use the Cartesian ones.)

(b) Calculate the group velocity of these perturbations for the HII gas in the disk of the Milky

Way. Some information on the phases of the interstellar medium is summarized in the intro to the

book by B.Draine “Physics of the interstellar and intergalactic medium” (see attached, although

you still may need to look up B0). Compare this velocity to the sound speed in the same gas.

Provide references for numerical values if necessary.

(c) Are ideal MHD equations appropriate for describing the structure and evolution of a pro-

toplanetary disk? Why?

(d) Derive equation (6) from relativistic EM field transforms and from the condition that the

electric field in the frame co-moving with infinitely conductive fluid must be zero. This equation is

strongly related to the “flux freezing equation”:
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Can you derive it from the equations provided above? Is it applicable to relativistic plasmas? Is

it applicable to compressible plasmas? Why is this equation called “the flux freezing equation”?

What is frozen to what?






