Homework 4 – AS.171.627 – Zakamska AKA "MHD madness" – title courtesy of Duncan W.

1. Proper motion errors (2 points). Suppose that $N \gg 1$ measurements of the position of a star relative to several quasars are made at equal intervals Δt , all with the same uncertainties. The total timespan or the baseline of the observations is therefore $T = N\Delta t$. Assuming that the trigonometric parallax is negligible, how does the accuracy of the resulting proper motion determination scale with the length of the baseline? In other words, if the accuracy of the proper motion is $\epsilon \propto T^{-a}$, what is a?

2. Solar rotation speed (4 points). (a) Harris's catalog of Galactic globular clusters we used in a previous homework gives the Galactic latitude and longitude of each cluster (in Part I) as well as its radial velocity relative to the Local Standard of Rest (in Part III). Use these data to make a kinematic estimate of the rotation speed of the LSR, assuming that the cluster system itself does not rotate. Your result should include error bars. This is a kinematic estimate, not a dynamical estimate, i.e., you do not need to use Newton's laws. Does your result agree with the recent estimates? If not, what do you think may be the problem with this method? (b) Using the data in Part II of Harris's table, estimate the distance to M31, assuming that the luminosity function of globular clusters is the same in the two galaxies and that the mean apparent magnitude of the M31 globular clusters is $\langle m_V \rangle = 17.1$.

3. Ideal Magnetohydrodynamics (5+1+1+3 points). The equations of non-relativistic ideal MHD can be found in many places (e.g., on Wikipedia). Unfortunately, many places give them in SI rather than Gaussian (cgs) units. For compatibility with astrophysics literature I highly recommend the latter, so you need to be careful where you look. (You will also discover to your great dismay that some sources redefine the magnetic field to get rid of the 4π terms, $B_{\text{new}} = B_{\text{Gauss}}/\sqrt{4\pi}$, which is yet a third set of units, so watch out for this.) Ideal MHD describes the behavior of fluids in magnetic fields, with a great simplification that the fluid is assumed to be infinitely conductive. This is an excellent approximation for many astrophysical plasmas, for example quasar accretion disks. Every fluid element consists of electrons and positively charged nuclei, so its average charge is neutral, but if you apply an electric field to such fluid element, electrons and nuclei immediately start flowing in opposite directions with essentially no resistance and screen the field out.

Let's write out the equations of non-relativistic ideal MHD in Gaussian (cgs) units. We start with the continuity equation, and it is the same as the one we discussed in class:

$$\frac{\partial \rho}{\partial t} + \nabla(\rho \mathbf{v}) = 0. \tag{1}$$

Euler equation acquires an Amper force term which should be familiar to you from basic E&M (just remember that it is per unit volume):

$$\rho\left(\frac{\partial}{\partial t} + (\mathbf{v}\nabla)\right)\mathbf{v} = \frac{\mathbf{j}\times\mathbf{B}}{c} - \nabla p - \rho\nabla\Phi.$$
(2)

Here **j** is the current density (the standard current flowing through the wires that you used in basic E&M is I = current density times the cross-section of the wire). We have neglected the electrostatic force here because we've assumed that the plasma or the fluid has 0 net charge density. In addition, to describe the E&M fields we have three of the four Maxwell's equations which also should be familiar:

$$\nabla \mathbf{B} = 0 \tag{3}$$

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \tag{4}$$

$$\nabla \times \mathbf{B} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} + \frac{4\pi}{c} \mathbf{j}.$$
 (5)

It turns out that in the non-relativistic case the *displacement current* term can be neglected. If you don't remember what this is, look it up and cross it off; we may discuss why this term is negligible at some later point, but for now let's just get rid of it.

The last Maxwell's equation connects the electric field with the charge density, which would then need its own equations which would be a big mess. Fortunately, under the assumptions of ideal MHD the electric field is screened because of the infinite conductivity in the frame co-moving with the fluid:

$$\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} = 0. \tag{6}$$

This equation replaces the 4th Maxwell's equation.

The final equation that wraps the system is the equation of state:

$$P = P(\rho). \tag{7}$$

These are the equations that are solved numerically when people study the behavior of nonrelativistic plasmas in magnetic fields.

Let's consider a steady-state solution which is homogeneous fluid ρ_0 at rest $\mathbf{v}_0 = 0$ with no gravity $\Phi = 0$ and uniform magnetic field \mathbf{B}_0 threading the fluid. \mathbf{B}_0 is directed for example along the z-axis (although you should try to keep the vector notation as long as possible). In addition we will consider the following simplifications:

- We will consider a fluid that is *incompressible*: its density is always ρ_0 (so $\rho_1 = 0$ in perturbation analysis). This is for example a good approximation for liquid metals that are used in labs to study MHD experimentally: metals are highly conductive, nearly incompressible, and if the metal is liquid at room temperature it makes the experiment set up that much easier. For example, Princeton Plasma Physics Lab had an MHD turbulence experiment filled with liquid gallium.
- We will ignore the pressure terms in the Euler (or momentum) equation, so we will consider them subdominant to all other forces.

- We will drop the displacement current which is unimportant in non-relativistic motion.
- We will only consider the perturbations in which $\mathbf{B}_1 \perp \mathbf{B}_0$.

(a) First, determine to your satisfaction that the steady-state solution is in fact a solution to all the equations. Now let's see if this solution is stable. Conduct the linear stability analysis of this solution to perturbations with $\mathbf{B_1} \perp \mathbf{B_0}$. Derive the dispersion relation for these perturbations, find their phase and group velocity. Which way are they propagating? Which way are the fluid elements moving? Are these waves longitudinal or transverse? (I.e., are the fluid elements moving parallel or perpendicular to the direction of the wave propagation?) Are they growing or decaying? What are they called? (Hint: there are no curvy derivatives anywhere in this problem! If you need to use coordinates, use the Cartesian ones.)

(b) Calculate the group velocity of these perturbations for the HII gas in the disk of the Milky Way. Some information on the phases of the interstellar medium is summarized in the intro to the book by B.Draine "Physics of the interstellar and intergalactic medium" (see attached, although you still may need to look up B_0). Compare this velocity to the sound speed in the same gas. Provide references for numerical values if necessary.

(c) Are ideal MHD equations appropriate for describing the structure and evolution of a protoplanetary disk? Why?

(d) Derive equation (6) from relativistic EM field transforms and from the condition that the electric field in the frame co-moving with infinitely conductive fluid must be zero. This equation is strongly related to the "flux freezing equation":

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}). \tag{8}$$

Can you derive it from the equations provided above? Is it applicable to relativistic plasmas? Is it applicable to compressible plasmas? Why is this equation called "the flux freezing equation"? What is frozen to what?

INTRODUCTION	1.2 Mass of H II, H I, and H ₂	Phase $M(10^9 M_{\odot})$ fraction Note) 1.12 23% 2.9 60%	Total H2 (not including He) 0.84 17% see Chapt Total H1, H1 and H2 (not including He) 4.9 Total gas (including He) 6.7	$z_{1/2}$ of the disk to be the distance <i>z</i> above (or below) the plane where the dens dropped to 50% of the midplane value. Observations of radio emission from a hydrogen and from the CO molecule indicate that the half-thickness $z_{1/2} \approx 500$ pc of the disk in the neighborhood of the Sun. The thickness $2z_{1/2} \approx 500$ pc of the disk -6% of the ~ 8.5 kpc distance from the Sun to the Galactic center – it is disk. The thinness of the distribution of dust and gas is evident from the 1 disk.	image showing incrinat consiston from the firler 2, and the firler 1. The baryons in the interstellar medium of the Milky Way are found with range of temperatures and densities; because the interstellar medium is dy all densities and temperatures within these ranges can be found somewhere Milky Way. However, it is observed that most of the baryons have temper	falling close to various characteristic states, or "phases." For purposes of c sion, it is convenient to name these phases. Here we identify seven distinct that, between them, account for most of the mass and most of the volume interstellar medium. These phases (summarized in Table 1.3) consist of the f ing:	• Coronal gas: Gas that has been shock-heated to temperatures $T \gtrsim 1$ by blastwaves racing outward from supernova explosions. The gas lisionally ionized, with ions such as O VI ($\equiv 0^{5+}$) present. Most	coronal gas has low density, filling an appreciable fraction – approxin half – of the volume of the galactic disk. The coronal gas regions macharacteristic dimensions of ~ 20 pc, and may be connected to other c gas volumes. The coronal gas cools on \sim Myr time scales. Much of the ume above and below the disk is thought to be pervaded by coronal gis often referred to as the "hot ionized medium," or HIM .	HI gas: Gas where the hydrogen has been photoionized by ultraviols tons from hot stars. Most of this photoionized gas is maintained by rat from recently formed hot massive O-type stars – the photoionized gas r dense material from a nearby cloud (in which case the ionized gas is	an HII region) or lower density "intercloud" medium (referred to as HII).
4 CHAPTER 1					8.5 kpc ~500pc Sun Galactic Center gaseous disk		Figure 1.2 Structure of the Milky Way, viewed edge-on. The dots represent a sampling of starts; the volume containing most of the interstellar gas and dust is shaded. Compare with the infrared image of the starts in Plate 1, the dust in Plate 2, and various gas components in Plates 3–5.	1.1 Organization of the ISM: Characteristic Phases	In a spiral galaxy like the Milky Way, most of the dust and gas is to be found within a relatively thin gaseous disk, with a thickness of a few hundred pc (see the diagram in Fig. 1.2 and the images in Plates 1–5), and it is within this disk that nearly all of the star formation takes place. While the ISM extends above and below this disk, much of our attention will concern the behavior of the interstellar matter within a few hundred pc of the disk midplane.	The Sun is located about 8.5 kpc from the center of the Milky Way; as it happens, the Sun is at this time very close to the disk midplane. The total mass of the Milky Way within 15 kpc of the center is approximately $10^{11}M_{\odot}$; according to current estimates. this includes $\sim 5 \times 10^{10}M_{\odot}$ of stars, $\sim 5 \times 10^{10}M_{\odot}$ of dark matter.	and $\sim 7 \times 10^9 M_{\odot}$ of interstellar gas, mostly hydrogen and helium (see Table 1.2). About 60% of the interstellar hydrogen is in the form of H atoms, $\sim 20\%$ is in the

Phase	$M(10^9 M_{\odot})$ fraction Note	fraction	Note
Total HII (not including He)	1.12	23%	see Chapter 11
Total HI (not including He)	2.9	60%	see Chapter 29
Total H ₂ (not including He)	0.84	%11	see Chapter 32
THE HI and H ₂ (not including He)	4.9		
otar to the gas (including He)	6.7		

nsity has n atomic ≈ 250 pc k is only is a thin $100\,\mu{\rm m}$ ne image h a wide lynamic, are in the st phases ne of the f discusfolloweratures

- nay have the volgas.¹ It $10^{5.5}\,{
 m K}$ · coronal st of the s is colximately
- olet phoradiation is may be is called s diffuse

ഹ

 17 This gas is termed "corona?" because its temperature and ionization state is similar to the corona of the Sun.

The gaseous disk is approximately symmetric about the midplane, but does not have a sharp boundary - it is like an atmosphere. We can define the half-thickness

				and the second
Phase	T(K)	$n_{\rm H}({ m cm^{-3}})$	Comments	Bright ri li regions, such as the Urion incoura, have dimensions
Coronal gas (HIM)	$\gtrsim 10^{5.5}$	~ 0.004	Shock-heated	their lifetimes are essentially those of the ionizing stars, $\sim 3 - 1$
$f_V \approx 0.5?$			Collisionally ionized	extended low-density photoionized regions – often referred to a
$\langle n_{\rm H} \rangle f_V \approx 0.002 {\rm cm}^{-3}$			Either expanding or in pressure equilibrium	ionized medium, or WIM – contain much more total mass the
			Cooling by:	visually consultants high-density HTI regions According to c
$(f_V \equiv \text{volume filling factor})$	tor)		♦ Adiabatic expansion	water the Galary contains $\sim 1.1 \times 10^9 M_\odot$ of ionized hydrogen
			V A ray emission Observed hv:	of this is within 500 no of the disk midnlane (the distribution of
			• UV and x ray emission	discussed in Chanter 11) In addition to the HII regions, photo
			 Radio synchrotron emission 	ie eleo found in distinctine eturctures collect nanetere nehulos ²
HII gas	10^{4}	$0.3 - 10^4$	Heating by photoelectrons from H, He	is that routed in the distributive survenues called pianetal y nedula anoted when would more lose during the late stream of availation
$f_V \approx 0.1$			Photoionized	Updated wheth replanting and states are states of evolution of
$\sim 10.7 \text{ m}^2 \approx 0.02 \text{ cm}^2$			Either expanding or in pressure equilibrium	initial mass $0.5M_{\odot} < M < 0.M_{\odot}$ exposes the not stellar core; u
			Cooling by:	from this core photoionizes the outflowing gas, creating a lumine
			♦ Optical line emission	ten very beautiful) planetary nebula. Individual planetary nebula
			♦ 1100-1100 CURSSION ♦ Fine-structure fine ambecies	on $\sim 10^4$ yr time scales.
			V 1 tue-survence mic cumston Observed by:	5
			• Ontical line emission	• Warm H.I. Predominantly atomic gas heated to temperatures T
			• Thermal radio continuum	in the local interstellar medium, this gas is found at densities $n_{\rm H} \approx$
Warm H I (WNM)	~5000	0.6	Heating by nhotoelectrons from duet	It fills a significant fraction of the volume of the disk – perhans (
$f_V \approx 0.4$			Ionization by starlight, cosmic rays	the second second second second with the second sec
$n_{ m H} f_V pprox 0.2 { m cm}^{-3}$			Pressure equilibrium	ICICITOR IO 45 HIO WALLIE ACALLAL MICUMUM, OL TTANA.
			Cooling by:	• Cool H1: Predominantly atomic gas at temperatures $T \approx 10^2 { m K}$
			Optical line emission	withe $m_{\rm e} \sim 30 {\rm cm}^{-3}$ filling $\sim 10^{\circ}$ of the volume of the local
			♦ Fine structure line emission	
			Ubserved by: • 11 5.1 cm amiration abcounting	Incumula, Oakin teletiku tu as tao com incuta al ancumul, or car
			• AT EXTEMENTATION, absorption • Optical, UV absorption lines	• Diffuse molecular gas: Similar to the cool HI clouds, but with
Cool H I (CNM)	~ 100	30	Heating hy much electronic from dust	large densities and column densities so that H ₂ self-shielding (c
$f_V \approx 0.01$			Ionization by starlight, cosmic rays	Chanter 31) allows H _o molecules to be abundant in the cloud inte
$n_{ m H} f_V pprox 0.3 { m cm}^{-3}$			Cooling by:	Citaputa JI) anows Liz moves to be available in the creater
			◇ Fine structure line emission	Dense molecular gas: Gravitationally bound clouds that have ach
			Observed by:	$10^3 \mathrm{cm}^{-3}$. These clouds are often "dark" – with visual extinc
			 F11 ∠1-Cm emission, absorption Ontical TIV absorption time 	3 mag through their central regions. In these dark clouds, the dus
Diffuse H ₂	$\sim 50 \text{K}$	~ 100	Hauting hy abotal provinces from A	often coated with "mantles" comnosed of H ₂ () and other molec
$f_V \approx 0.001$		2	formers of protociccutoris (10) and the former former for the former former for the former former former for the former forme	is within these regions that star formation takes place. It should b
$n_{\rm H} f_V \approx 0.1 {\rm cm}^{-3}$			Cooling by:	the gas presentes in these "tense" clouds would mealify as ultrah
			♦ Fine structure line emission	in gametrial laboratory
			Observed by:	in a wiredual iacouatory.
			• rt1 z1-cm emission, absorption • CO 3 6.mm emission	Stellar outflows: Evolved cool stars can have mass loss rat
			optical, UV absorption lines	$10^{-4} M_{\odot} \text{ yr}^{-1}$ and low outflow velocities $\lesssim 30 \text{ km s}^{-1}$, leading t
Dense H ₂	10 - 50	$10^3 - 10^6$	Heating by photoelectrons from dust	high density outflows. Hot stars can have winds that are much
$f_V \approx 10^{-4}$			Ionization and heating by cosmic rays	though far less dense.
$(n_{\rm H})f_V \approx 0.2{\rm cm^{-3}}$			Self-gravitating: $p > p(ambient ISM)$	
			Cooling by:	The ISM is dynamic, and the baryons undergo changes of phase for a
			♦ CU fille structure line emission	reasons: ionizing photons from stars can convert cold molecular gas
			Observed by:	radiative cooling can allow hot gas to cool to low temperatures; ions ar
			CO 2.6-mm emission Alter FIR emission	can recombine to form atoms, and H atoms can recombine to form H_2
Cool stellar outflows	$50 - 10^3$	$1 - 10^{6}$	Observed hv-	
			 Optical, UV absorption lines Dust IR emission 	² They are called "planetary" nebulae because of their visual resemblance to planets through a small relevence

ns of a few pc; - 10 Myr. The as the warm than the more inous (and of-ilae fade away otoionized gas sn; about 50% of the HII is e^2 – these are current estin of stars with the radiation

- $T \approx 10^{3.7} \text{ K};$ $H \approx 0.6 \text{ cm}^{-3}.$ ps 40%. Often
- γ² K, with den-cal interstellar NM.
- (discussed in h sufficiently nterior.
- achieved $n_{\rm H}\gtrsim$ inction $A_V\gtrsim$ dust grains are lecular ices. It d be noted that nhigh vacuum
- ng to relatively uch faster, ales as high as

a number of and electrons s to hot HII; 2 molecules.

 \sim

ets when viewed through a small telescope.