Positive and negative feedback by AGN jets

Volker Gaibler

Universität Heidelberg Zentrum für Astronomie Institut für Theoretische Astrophysik (ITA)

Collaborators:
Joe Silk (IAP / JHU / Oxford)
Zack Dugan (JHU)
Martin Krause (MPE)
Sadegh Khochfar (Edinburgh)

Baking a galaxy...

The baryon nuisance

- AGN / jet activity in massive galaxies is quite common
 - (> 30% for high-mass bin, Best+ 2005)
 - → natural suspect additional processes (SN too weak)

The baryon nuisance

Idea:

energy input from black hole activity quenches star formation (cold gas heated, disrupted, expelled, ...) → negative feedback

- reasonable model, though somewhat ad-hoc
- 100 kpc scales in galaxy clusters: AGN jets can probably regulate the cooling flows, negative feedback works there

Rafferty+ 2008, Birzan+ 2012 Zanni+ 2005, Gaibler+ 2009

 Works well in semi-analytic models and cosmological hydro simulations – now a common ingredient

e.g. Croton+ 2006; Di Matteo+ 2005, Sijacki+ 2007, McCarthy+ 2010, Dubois+ 2013

$M_{\rm BH}$ – sigma and $M_{\rm BH}$ – M

- Observed: link between black hole and spheroid mass or velocity dispersion
- → Coevolution of black hole and the spheroid stellar component
 - → AGN feedback?
- Maybe, but might be also just statistics....
 Jahnke & Maccio 2011

Jahnke & Maccio 2011 Bulge Mass [M_☉]

Positive feedback

- However, AGN feedback could also lead to increased star formation via compression of gas
 - → positive feedback

Silk 2005

- Interstellar medium: multi-phase medium densities, temperatures, clumpy and filamentary (unlike intra-cluster medium)
 - → cannot be sufficiently described in large-scale simulations
 - → wishful thinking???
 - → back one step and explore how this interaction actually occurs in detail (theory & observations)!

Sutherland & Bicknell 2007, Wagner & Bicknell 2011

Simulating jet feedback

galaxy:

- massive and gas-rich galaxy at z \sim 2-3, 10^{11} solar masses both stars & gas, \sim 150 M_s/yr (e.g. Genzel+ 2010)
- explicitly including *star formation*
- clumpy disk structure, thick disk
- optically thin cooling
- minimum temperature 10⁴ K
- RAMSES, adaptive mesh refinement
- 128 kpc box, 62 pc resolution

Cyg A Wilson+, Perley+

jet:

- powerful jet (5 x 10^{45} erg/s)
- mildly relativistic (0.8 c)
- → resolved jet beam
- → tiny time steps

details: VG, Krause, Khochfar, Silk 2012

Disk evolution rendering

movies:

jet – disk interaction: http://www.ita.uni-heidelberg.de/~vgaibler/jet-disk/

jet – disk interaction including star formation: http://www.ita.uni-heidelberg.de/~vgaibler/jet-disk-sf/

Star formation

- strong increase in star formation rate: positive feedback
- filling factor of dense gas increases
- cloud survival/destruction:
 - Mellema+ 2002: shocked coulds break up but survive, Jeans-unstable → collapse
 - cloud crushing time and Kelvin-Helmholtz growth time ok

The "3 Faces" of Feedback

- Three aspects of feedback found:
 - Negative in central cavity region (gas removal) mass drops to ~ 50 % (remainder is in dense filaments)
 - Positive in cavity rim
 (ring-like shock/compression region)
 Mellema+ 2002
 - Positive at large scales

 (disk embedded in an overpressured cocoon, thermal and backflow ram pressure)
 despite ablation!

Cocoon dynamics

Cocoon dynamics

Lower gas mass, thinner disk

much thinner disk (300 pc) smaller filling factor gas mass is 20 x smaller

--- preliminary ---

Observational results / 1

Blue: B, green: F622W, red: F814W

• Low redshift: only few, due to low gas masses?

Minkowski's object (Croft+ 2006), Cen A (Mould+ 2000, Morganti 2010) Cygnus A: ring of young stars (Jackson, Tadhunter, Sparks 1998)

Higher redshift:

PKS2250-41 (Inskip+ 2008, z = 0.3), 4C 41.17 (Dey + 1997, Bicknell 2000, z = 3.8)

Blue: B, green: [OIII], red: Ha Cyq A, R. Fosbury

radio+X-ray

Observational results / 2

- recent SF in >75% of compact radio sources (Dicken+ 2012, 0.05 < z < 0.7, < 15 kpc)
- young stellar populations in z < 0.7 radio galaxies (Tadhunter+ 2002, Wills+ 2002, Baldi & Capetti 2008, Tadhunter+ 2011, in central regions: Aretxaga+ 2001)
- Holt+2007: ~30 % of local radio galaxies have YSP detected find considerable UV excess due to YSP, not only nuclear activity, 50 % have ages < 0.1 Gyr, make 1-35 % of mass

Observational results / 3

- Rovilos+ 2012: star formation correlates with AGN activity (z = 0.5 ... 4)
- Zinn+ 2013:
 >200 radio/X-ray AGN stacked,
 redshifts z = 0 ... 4 (avg. 2)

star formation rates from FIR with Herschel not contaminated by AGN

→ radio power makes the difference in SFR, not X-ray

 increase in SFR, what about sSFR? Systematically more massive hosts?

Stability of the star-forming clouds

- Mellema et al. 2002: shocked cloud breaks up, small and dense fragment survive long due to strong cooling, Jeans-unstable, SF induced
- Cooper et al. 2009: cloud in by starburst-driven galactic wind, cools and fragments to ~pc sized clouds
- Estimates from our sims, 100 pc cloud radius, $100 \text{ m}_p/\text{cm}^3$ fiducial:
- cloud crushing time: $t_{crush} = R_c / v_{sh} > 10^8 \text{ yr}$
- KH growth time in our sim: $t_{KH} \sim 10^5 10^6 \text{ yr}$

self-gravity stabilizes,

KH time increased by magnetic fields, less ablation?

Quasar feedback

- So far: jet feedback (collimated beam as driver, mechanical) high-power FR II vs. low-power FR I (more common)
- Quasar
 - radiation feedback (ionization, heating)
 - mechanical feedback via radiation-driven winds, BAL quasars, ultra-fast outflows (see Alex' talk)

Wagner & Bicknell 2011

Quasar feedback

- Only jet feedback simulated so far quasar feedback might be negative, but beware:
 - significant fraction might go into heating
 - → blastwave → similar result as for jets
 - presence of dusty torus limits the opening angle considerably, not easy to affect much of the gaseous disk (misalignment vs solid angle affected)

Summary

- Clumpy multi-phase structure of ISM is important: Complex interaction of the jet with the clouds Need more physical models for jet feedback!
- Negative feedback not so easy at galaxy scales
- Positive feedback is efficient via blastwave formation increasing observational evidence
- Impact for galaxy evolution so far uncertain
 - long-term effects?
 - interaction / survival of self-gravitating clumps
 - more physical models necessary