Effects of AGN feedback on structure formation

Yohan Dubois

Institut d'Astrophysique de Paris (IAP)

Raphael Gavazzi – IAP Sébasten Peirani – IAP Christophe Pichon – IAP Joseph Silk – IAP Marta Volonteri – IAP Julien Devriendt – University of Oxford Adrianne Slyz – University of Oxford Romain Teyssier – UTH Zürich Taysun Kimm – Princeton Martin Haehnelt – University of Cambridge

Baryonic physics cannot be neglected (Euclid)

Van Daalen et al., 2011

RAMSES : an Adaptive Mesh Refinement (AMR) code

- Language :
 - Fortran 90
 - MPI parallel
- Method : adaptive grid refinement
- Equations :
 - Hydrodynamics
 - Gravity
 - Atomic/Metal cooling + UV-heating
 - (Magneto-hydrodynamics)
 - (Radiative transfer)
- Sub-grid physics :
 - Star formation
 - Supernovae & Stellar Winds
 - <u>Active Galactic Nuclei</u> (AGN)
- Cosmology

See Teyssier, 2002

Two main modes of AGN feedback

Eddington ratio of the accretion rate $=\frac{\dot{M}_{\rm BH}}{\dot{M}_{\rm Edd}}$ Radio mode (kinetic jet) when $\chi \leq 0.01$ $L_{\rm radio} = 0.1 \dot{M}_{\rm BH} c^2$ Quasar mode (heating) when $\chi > 0.01$ $L_{\rm quasar} = 0.015 \dot{M}_{\rm BH} c^2$

Heuristic efficiencies calibrated from cosmological simulations

First AMR simulations of self-consistent AGN feedback in a cosmological context

- Mimic the formation of black holes (where and when) In the centre of galaxies in high gas and stellar-density regions

$$M_{\rm seed} = 10^5 \,\mathrm{M}_{\odot}$$

First AMR simulations of self-consistent AGN feedback in a cosmological context

- Mimic the formation of black holes (where and when)
- Mimic the gas accretion onto black holes

In the centre of galaxies in high gas and stellar-density regions

$$M_{\rm seed} = 10^5 \,{\rm M}_{\odot}$$

Bondi accretion rate

$$\dot{M}_{
m BH} \propto
ho rac{M_{
m BH}^2}{c_{
m s}^3}$$

Fast accretion in dense and cold regions

First AMR simulations of self-consistent AGN feedback in a cosmological context

- Mimic the gas accretion onto black holes - Mimic the mergers between black holes (Friend-offriend algorithm)

sink particles (Bate et al., 1995, Krumholz et al., 2004)

First AMR simulations of self-consistent AGN feedback in a cosmological context

- Mimic the formation of black holes (where and when)
- Mimic the gas accretion onto black holes
- Mimic the mergers between black holes (Friend-offriend algorithm)
- Mimic the feedback from black holes (AGN)

$$L_{\rm AGN} = \epsilon_f \epsilon_r \dot{M}_{\rm BH} c^2$$

High accretion rates Quasar mode With thermal input (Teyssier et al., 2011) (see Di Matteo/Springel/Sijacki et al. papers, and Booth & Schaye papers)

Modification of the internal energy

-> increase the gas temperature

First AMR simulations of self-consistent AGN feedback in a cosmological context

- Mimic the formation of black holes (where and when)
- Mimic the gas accretion onto black holes
- Mimic the mergers between black holes (Friend-offriend algorithm)
- Mimic the feedback from black holes (AGN)

$$L_{\rm AGN} = \epsilon_f \epsilon_r \dot{M}_{\rm BH} c^2$$

Low accretion rates or with jets (Dubois et al., 2010, 2011) Radio mode

Compute gas angular momentum around the black hole -> jet axis

Kinetic energy with bipolar outflow

Mass ejected with velocity 10 000 km/s

(jet-model based on Omma et al. 2004)

First AMR simulations of self-consistent AGN feedback in a cosmological context

- Mimic the formation of black holes (where and when)
- Mimic the gas accretion onto black holes
- Mimic the mergers between black holes (Friend-offriend algorithm)
- Mimic the feedback from black holes (AGN)

High accretion ratesWith thermal input (Teyssier et al., 2011)Low accretion ratesor with jets (Dubois et al., 2010, 2011)

$$L_{\rm AGN} = \epsilon_f \epsilon_r \dot{M}_{\rm BH} c^2$$

 $L_{\rm box} = 12.5 \,\mathrm{Mpc/h}$ $\Delta x_{\rm min} = 0.38 \, \rm kpc/h$

WMAP 5-year cosmology

 17.10^6 DM particles $M_{\rm DM} = 6.9 \, 10^6 \, {\rm M}_{\odot} / {\rm h}$

Red = gas temperature / Green = gas density / Blue = gas metallicity

No AGN

Dubois, Devriendt, Slyz, Teyssier, 2012

Radio mode or quasar mode ?

Stellar mass functions

Dubois et al, in prep.

Stellar mass in central massive galaxies

0 x (kpc) -200 0 x (kpc) 200 400

600

Can we get massive galaxies that look like ellipticals ?

Increasing mass

140 kpc

Dubois, Gavazzi, Peirani, Silk, 2013

Are they in rotation or supported by velocity dispersion ?

JHU - AGN and starburst-driven outflows

Dubois, Gavazzi, Peirani, Silk, 2013

Get bigger

- Horizon-AGN simulation Jade (CINES)
 - (PI Y. Dubois, Co-I J. Devriendt & C. Pichon)
 - L_{box}=100 Mpc/h
 - 1024³ DM particles $M_{DM,res}$ =8x10⁷ M_{sun}
 - Finest cell resolution dx=1 kpc
 - Gas cooling & UV background heating
 - Low efficiency star formation
 - Stellar winds + SNII + SNIa
 - O, Fe, C, N, Si, Mg, H
 - AGN feedback radio/quasar
- Outputs
 - Simulation outputs
 - Lightcones (1°x1°) performed on-the-fly
 - Dark Matter (position, velocity)
 - Gas (position, density, velocity, pressure, chemistry)
 - Stars (position, mass, velocity, age, chemistry)
 - Black holes (position, mass, velocity, accretion rate)
- z=1.5 using 3 Mhours on 4096 cores

Are the imprints of LSS noticeable on galaxy properties ?

Mass distribution in a Virgo-like cluster

Teyssier et al., 2011 (see also Dubois et al, 2010, Martizzi et al, 2012)

Observationnal facts:

- Very bright quasars in the SDSS with z>6 (Willott et al., 2003; Fan et al.,

2006; Jiang et al., 2009)

- Detection of a 2.10⁹ M_{sun} BH at z=7 (Mortlock et al., 2011)

Requirement:

- Need to grow from 10^{5} - 10^{6} M_{sun} up to 10^{9} M_{sun} in less than 700 Myrs ! Eddington limit provides an e-folding time = 45 Myr

JHU - AGN and starburst-driven outflows

Growing the first bright quasars

<u>Observationnal facts</u>: - Very bright quasars in the SDSS with z>6 (Willott et al., 2003; Fan et al., 2006; Jiang et al., 2009) - Detection of a 2.10⁹ M_{sun} BH at z=7 (Mortlock et al., 2011)

Sun (, , ,

- Need to grow from 10^{5} - 10^{6} M_{sun} up to 10^{9} M_{sun} in less than 700 Myrs ! Eddington limit provides an e-folding time = 45 Myr

Question:

- How to bring gas sufficiently rapidly into the bulge of the galaxy ?

 Direct accretion from the cosmic cold flows (Di Matteo et al., 2012) Cosmological context with large statistics but low resolution (~1kpc) Versus
 Violent disc instabilities (Bournaud et al., 2011) High resolution (1pc) but isolated disc

11/20/13

Very massive halos

Simulate a rare density peak: very massive halo that could host a very massive BH

Set of simulations:

-A low mass halo SH with 5.10¹¹ M_{sun} at z=6, and 100 pc resolution -A high mass halo LH with 2.10¹² M_{sun} at z=6, and 100 pc resolution

Very massive halos

Simulate a rare density peak: very massive halo that could host a very massive BH

Set of simulations:

-A low mass halo SH with 5.10^{11} M_{sun} at z=6, and 100 pc resolution -A high mass halo LH with 2.10^{12} M_{sun} at z=6, and 100 pc resolution -A low mass halo SH with 5.10^{11} M_{sun} at z=6, and 10 pc resolution

Follow the white rabbit...

Take the gas tracer particles that belong to the galactic bulge

Late time gas infall do more rotations before being accreted. Compatible with late-time cosmic filamentary infall having more angular momentum (Pichon et al., 2011, Kimm et al., arXiv:1106.0538, Codis et al., 2012)

A rapid clump migration to trigger late-time AGN bursts

Dubois, Pichon et al., 2012

The good old picture

Dubois, Pichon et al, 2012, 2013

- Cold collimated streams of gas plunges into halos.
- -They feed the central galaxy with large amounts of fresh material
- All of this neglects the role of (any) feedback

What about the impact of feedback on the gas accretion ?

Let's do the full monty: star formation + SN feedback + AGN Halo mass is 5.10^{11} M_{sun} at z=6 (10 pc resolution)

AGN quenches star formation efficiently early-on

Dubois, Pichon et al., 2013

AGN blows cold flows away

Gas is driven out hot from the central galaxy due to AGN.

Cold filaments are repelled from the halo. Their structure is strongly perturbed (Skeleton, *Sousbie et al, 2009*)

Dubois, Pichon et al., 2013

BH growth quenched by (too?) efficient SN feedback

