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C.5 Legendre functions

The Legendre functions of the first and second kinds, P{'(z) and Qf(2), are linearly
independent solutions of the differential equation

d 2y dw W _
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For Re(\) > 0, the Legendre functions of the first kind diverge (< 2*) as |z| — oo,
while the functions of the second kind vanish [ox z=**V]. As z — 0
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Here sgn(z) =+1if > 0 and -1 if z <O0.

For many applications we are interested in the Legendre functions with real
arguments, z = «, in the interval —1 < z < 1. Unless p is an even integer, P{' (z+ie)
and P{'(z — ie) are different for real  and € as € — 0. Thus it is conventional to
redefine the Legendre functions for —1 < x <1 by

Pl(z) = L lim [e"wpf(x File]) +e ™ 2Pz — i\e|)]
e—0
—imp —mip/2 Tip/2 (032)
Q4(@) = Se ™™ lim [T QL (@ + ilel) + QY (w — ile])]|
For y = 0 and A a non-negative integer, the Legendre functions are polyno-
mials given by the formula

1 d
24! dat
These Legendre polynomials are also generated by the relation

Pi(z) = P(z) = (> = DL (C.33)
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which leads to an expression for the inverse distance between the points x and x’,

=Y A@t <1 <1, (C34)
1=0
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m = Z T<1P1(COS ’}/), (C35)
=0 ">

where r< = min(|x|, |x'|), 7> = max(|x], |x'|), and v is the angle between the two
vectors.

For integer m > 0 and integer [ > 0 the Legendre functions are sometimes
called associated Legendre functions, and are given by!

/2 d™P(@) (1—2?)m/2 A+ B (2)
dzm™ 2U! dattm

P"(z) = (-1)"(1 - 2% =" (C.36)

L Our convention for associated Legendre functions with real = between —1 and +1
follows Abramowitz & Stegun (1964), Press et al. (1986), Gradshteyn & Ryzhik (2000),
and software such as IDL, Maple, and Mathematica, but differs from Morse & Feshbach
(1953), Arfken & Weber (2005), and the first edition of this book by a factor (—1)"".
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Note that P/™(z) vanishes for m > [, and that P/"(z) is even in x if [ — m is even,
and odd if [ —m is odd. We have

m m (I+m)!
P (0) = (—1)+m™/2 (I — m even), (C.37)
251 =m) 5+ m)]
and zero if (I —m) is odd. For integer m > 0,
m(=m)!
=(-1 P, . C.38
“ (@) = (1) GTmy (z) (C.38)
The associated Legendre functions are orthogonal in the sense that
E m m 2 (I+m)
bodx & L ({+m)!
P (x)P, = Om, Al
| @R = (C.40)

The associated Legendre functions can be written most compactly using the
substitution x = cos#; since —1 < x < 1 we take 0 < # < 7 and let ¢ = cos¥0,
s =sin6:

Py(c)=1
Pi(c)=c Pl(c) = —s
Py(c) = %(302 —1)  Pi(c) = —3cs Pi(c) = 352
P3(c) = 2(5¢® —3¢) P3(c)=—3s(5¢ —1) Pj(c) =15cs® P(c) = —15s°.
(C.41)
C.6 Spherical harmonics
A spherical harmonic is defined by the expression
Y, = — =P >0). 42
1(0.0) = \| T (T P s 0™ (m=0). (Ca2)

For most purposes, the indices of the spherical harmonics can be restricted to
Il =0,1,2,... and m = —l,-l+1,...,l — 1,I. The variables lie in the range
0 <6 <7mand 0 < ¢ < 27 and usually represent the angular coordinates in a
spherical coordinate system (see Figure B.1). Note that

Y0, 0) = (=1)"Y["7(0, 6), (C.43)

where the asterisk denotes complex conjugation.
The most important feature of the spherical harmonics, which is easily proved
using equation (C.39), is that they are orthonormal in the sense that

%szYﬁ*(Q)Y{”(Q) :/ do bme/ AS Y™ (0, )1 (0, 8) = Suibum.  (C.44)

An arbitrary function of position f(r) can be written in spherical coordinates
as a series of spherical harmonics,

oo l

) =£(r0,0)=>" > fim(r)Y"(0,9). (C.45)

n=0m=-—1
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Multiplying by YX" (6, ¢), integrating over solid angle, and using equation (C.44),
we find

fur(r) = / EAYE(0,6)f(x). (C.46)

The addition theorem for spherical harmonics states that if the directions
(0, $) and (0',¢') are separated by an angle v, then

!
Pi(cosn) = s 37 VP06V (0,6). (Ca7)
m=—1

Together with equation (C.35), this leads to an expression for the inverse distance
between the points x = (1,0, ¢) and x' = (1,0, ¢'):

o l !
1 i v o m
x—x| > 2 A+ 1 ,,,l;lel (@', ¢ )YI" (0, 9), (C.48)
1=0 m=—1

where < = min(r,r’) and rs = max(r,r’).
Using equations (B.53) and (C.30) we can show that

VIOV e.0) = |51 () - o vree. ca
The first few spherical harmonics are:

V800, 0) = =

Y20, ¢) = 2 cos6 Y (9,¢) =T 2 sind etie

Y0, ¢) = =3 cos?0—1) YI'(0,¢)=T = sin @ cos § e*1¢ (G:50)

Y5%(0,0) = \/ 35= sin® 0 =7,

C.7 Bessel functions

The most complete reference is Watson (1995).
The Bessel functions of the first and second kind, J, (z) and Y, (z), are linearly
independent solutions of the differential equation

1d/ dw v?

- o)+ (1-5)uw=0. (C.51)
In series form,

B = 3 g (C.52)

T Rt R 2 : '

and Y, (z) is defined by the relation
cosvmdy(z) — J-u(2)

sin v

Y, (z) = , (C.53)

or by its limiting value if v is an integer. The function Y, (z) diverges as 27"l when
z— 0. Asx — o0

Jy(z) — % cos(z — svm — im) + O(x™H). (C.54)
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If v = n is an integer

Tn(=2) = (1" Ia(2) 5 Ja(x) = (CD"(2) 5 Yealz) = (—1)"Va(2),

(C.55)
Jn(2) = %/ d cos(zsin 6 — nh). (C.56)
0
If C, denotes either J, or Y,,
Cor(2) 4 Coa(2) = Z0u(e) 5 Coa()— () =299 o)
For v = 0 these relations imply
Jo(z) = —J1(2). (C.58)
An important integral identity is
/ dkk/ dRRF(R)J,(kR)J,(kr) = F(r) (v>—1), (C.59)
0 0
where F(R) is an arbitrary function. If
g(k) :/ drrf(r)d,(kr) (C.60a)
0
then g is called the Hankel transform of f, and equation (C.59) yields
Fr) = / dk kg (k) (kr). (C.60b)
0
The Hankel transform is defined for any integer v and all real v > — %
The modified Bessel functions are
R ml_,(z) = I,(z)
I(2)=1"J,(12) ; Ku(z)=K_,(z) = - ————=; (C.61)

2 sin vm

the second equation is replaced by its limiting value if v is an integer. As z — 0,

I.(z) — % (32)" (w#-1,-2,..);

B (C.62)
K2 - S 1) w0
At large x,
I(z) — \/QQE i Ky(z) — \/ge_”. (C.63)

If v = n is an integer,

L(=2) = (=1)"I.(2) ; In(z):I,n(z):l/ﬁdﬂe“osecos(ne). (C.64)
0

T
If Z, denotes either I, or ¢™ K,

dZ,(z)

2
Zor(2) = Zonr(2) = Z20(2) 5 Zor(2) + Zona(2) =271

(C.65)

for v = 0 these imply
Io(z) = Ii(2) ; Ko(z) = —Ki(2). (C.66)
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We shall use the results

"0 = Iy(2) + 2 Z In (%) cosnb = Z I,,(%) cos no; (C.67)

n=1 n=-—oo

/Oo dzz"J,(z) = Q“M
0

[z(v—p+3))
) T e HE
/u dz (22 — u2)l—»

21/—1/2(V _ 1)' ur/+1/2
= VT w172 KV+1/2(“H) (w >0, Rep,v > 0);

Re(v + ) > =1, Re(u) < 5. (C.68)

(C.69)

b
d v b2 .2 V73/2KV _ 21/73 _ 3 !b21/71
[ a7 =) = 2 VR = ) -

X [I-1(3b) Ky (3b) — I (3b)Ky—1(3D)] (Rev > —1).

Appendixz D: Mechanics

We assume a background in classical mechanics at the advanced undergraduate
level, including basic Hamiltonian mechanics. Useful reference texts include Lan-
dau & Lifshitz (1989), José & Saletan (1998), and Sussman & Wisdom (2001). The
most elegant and mathematical treatment of the subject is found in Arnold (1989).
This appendix contains a brief summary of the concepts employed in this book.

D.1 Single particles

The momentum of a particle is p = mv, where m is its mass and v is its velocity.
Its motion is described by Newton’s second law,

dp
F=— D.1
P, (1)
where F is the force acting on the particle. Thus, if the mass of the particle is
constant,

dv d’x F
= _ D.2
dt de? m (D-2)
The work done against the force F in moving a particle from x; to x2 is
X3
W12 = —/ dx - F, (D3)
X1

a line integral that is to be taken along the particle’s trajectory from x; to x3. The
rate at which work is done on the force is

aw d [x® dx
TRl . dx~F——E~F——F'V, (D.4)

evaluated at xs. For a particle of fixed mass,

X9 2 X9 2 X9
lez—m/ dx~d—);:—m/ dtd—x~d—;{:—m/ d15v~d—V
x1 dt x1 dt dt x1 dt (D.5)

= gm[v* (x1) — v*(x2)].



