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C.5 Legendre functions

The Legendre functions of the first and second kinds, P µ
λ (z) and Qµ

λ(z), are linearly
independent solutions of the differential equation

d
dz

»
(1 − z2)

dw
dz

–
− µ2

1 − z2
w + λ(λ+ 1)w = 0. (C.30)

For Re(λ) > 0, the Legendre functions of the first kind diverge (∝ zλ) as |z| → ∞,
while the functions of the second kind vanish [∝ z−(λ+1)]. As z → 0
»

d ln P µ
λ (z)

dz

–

z=0

= 2 tan[ 12π(λ+ µ)]
[ 12 (λ+ µ)]![ 12 (λ− µ)]!

[ 12 (λ+ µ − 1)]![ 12 (λ− µ − 1)]!
,

»
d ln Qµ

λ(z)

dz

–

z=0

= 2 exp{ 1
2πi sgn[Im(z)]}

[ 12 (λ+ µ)]![ 12 (λ− µ)]!

[ 12 (λ+ µ − 1)]![ 12 (λ− µ − 1)]!
.

(C.31)

Here sgn(x) = +1 if x > 0 and −1 if x < 0.
For many applications we are interested in the Legendre functions with real

arguments, z = x, in the interval −1 ≤ x ≤ 1. Unless µ is an even integer, P µ
λ (x+iϵ)

and P µ
λ (x − iϵ) are different for real x and ϵ as ϵ → 0. Thus it is conventional to

redefine the Legendre functions for −1 ≤ x ≤ 1 by

P µ
λ (x) ≡ 1

2 lim
ϵ→0

h
eπiµ/2P µ

λ (x + i|ϵ|) + e−πiµ/2P µ
λ (x − i|ϵ|)

i

Qµ
λ(x) ≡ 1

2e−iπµ lim
ϵ→0

h
e−πiµ/2Qµ

λ(x + i|ϵ|) + eπiµ/2Qµ
λ(x − i|ϵ|)

i
.

(C.32)

For µ = 0 and λ a non-negative integer, the Legendre functions are polyno-
mials given by the formula

Pl(x) ≡ P 0
l (z) =

1
2ll!

dl

dxl
(x2 − 1)l. (C.33)

These Legendre polynomials are also generated by the relation

1√
1 − 2xt + t2

=
∞X

l=0

Pl(x)tl |t| < 1, |x| ≤ 1, (C.34)

which leads to an expression for the inverse distance between the points x and x′,

1
|x − x′|

=
∞X

l=0

rl
<

rl+1
>

Pl(cos γ), (C.35)

where r< = min(|x|, |x′|), r> = max(|x|, |x′|), and γ is the angle between the two
vectors.

For integer m > 0 and integer l ≥ 0 the Legendre functions are sometimes
called associated Legendre functions, and are given by1

P m
l (x) = (−1)m(1 − x2)m/2 dmP 0

l (x)
dxm

= (−1)m (1 − x2)m/2

2ll!
dl+mP 0

l (x)
dxl+m

. (C.36)

1 Our convention for associated Legendre functions with real x between −1 and +1
follows Abramowitz & Stegun (1964), Press et al. (1986), Gradshteyn & Ryzhik (2000),
and software such as IDL, Maple, and Mathematica, but differs from Morse & Feshbach
(1953), Arfken & Weber (2005), and the first edition of this book by a factor (−1)m.
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Note that P m
l (x) vanishes for m > l, and that P m

l (x) is even in x if l −m is even,
and odd if l − m is odd. We have

P m
l (0) = (−1)(l+m)/2 (l + m)!

2l[ 12 (l − m)]! [ 12 (l + m)]
(l − m even), (C.37)

and zero if (l − m) is odd. For integer m > 0,

P−m
l (x) = (−1)m (l − m)!

(l + m)!
P m

l (x). (C.38)

The associated Legendre functions are orthogonal in the sense that
Z 1

−1

dxP m
l (x)P m

n (x) =
2

2l + 1
(l + m)!
(l − m)!

δln. (C.39)

Z 1

−1

dx
1 − x2

P m
l (x)P k

l (x) =
1
m

(l + m)!
(l − m)!

δmk. (C.40)

The associated Legendre functions can be written most compactly using the
substitution x = cos θ; since −1 ≤ x ≤ 1 we take 0 ≤ θ ≤ π and let c = cos θ,
s = sin θ:

P0(c) = 1

P1(c) = c P 1
1 (c) = −s

P2(c) = 1
2 (3c2 − 1) P 1

2 (c) = −3cs P 2
2 (c) = 3s2

P3(c) = 1
2 (5c3 − 3c) P 1

3 (c) = − 3
2s(5c2 − 1) P 2

3 (c) = 15cs2 P 3
3 (c) = −15s3.

(C.41)

C.6 Spherical harmonics

A spherical harmonic is defined by the expression

Ym
l (θ,φ) =

s
2l + 1

4π
(l − m)!
(l + m)!

P m
l (cos θ)eimφ (m ≥ 0). (C.42)

For most purposes, the indices of the spherical harmonics can be restricted to
l = 0, 1, 2, . . . and m = −l,−l + 1, . . . , l − 1, l. The variables lie in the range
0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π and usually represent the angular coordinates in a
spherical coordinate system (see Figure B.1). Note that

Y−m
l (θ,φ) = (−1)mYm

l
∗(θ,φ), (C.43)

where the asterisk denotes complex conjugation.
The most important feature of the spherical harmonics, which is easily proved

using equation (C.39), is that they are orthonormal in the sense that
I

d2ΩYn
k
∗(Ω)Ym

l (Ω) =

Z π

0

dθ sin θ

Z 2π

0

dφYn
k
∗(θ,φ)Ym

l (θ,φ) = δklδnm. (C.44)

An arbitrary function of position f(r) can be written in spherical coordinates
as a series of spherical harmonics,

f(r) = f(r, θ,φ) =
∞X

n=0

lX

m=−l

flm(r)Ym
l (θ,φ). (C.45)
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Multiplying by Yk
n
∗
(θ,φ), integrating over solid angle, and using equation (C.44),

we find

fnk(r) =

Z
d2ΩYn

k
∗(θ,φ)f(r). (C.46)

The addition theorem for spherical harmonics states that if the directions
(θ,φ) and (θ′,φ′) are separated by an angle γ, then

Pl(cos γ) =
4π

2l + 1

lX

m=−l

Ym
l

∗(θ′,φ′)Ym
l (θ,φ). (C.47)

Together with equation (C.35), this leads to an expression for the inverse distance
between the points x = (r, θ,φ) and x′ = (r′, θ′,φ′):

1
|x − x′|

=
∞X

l=0

lX

m=−l

4π
2l + 1

rl
<

rl+1
>

Ym
l

∗(θ′,φ′)Ym
l (θ,φ), (C.48)

where r< = min(r, r′) and r> = max(r, r′).
Using equations (B.53) and (C.30) we can show that

∇2[f(r)Ym
l (θ,φ)] =

»
1
r2

d
dr

“
r2 df

dr

”
− l(l + 1)

r2
f(r)

–
Ym

l (θ,φ). (C.49)

The first few spherical harmonics are:

Y0
0(θ,φ) = 1√

4π

Y0
1(θ,φ) =

q
3
4π cos θ Y±1

1 (θ,φ) = ∓
q

3
8π sin θ e±iφ

Y0
2(θ,φ) =

q
5

16π (3 cos2 θ − 1) Y±1
2 (θ,φ) = ∓

q
15
8π sin θ cos θ e±iφ

Y±2
2 (θ,φ) =

q
15
32π sin2 θ e±2iφ.

(C.50)

C.7 Bessel functions

The most complete reference is Watson (1995).
The Bessel functions of the first and second kind, Jν(z) and Yν(z), are linearly

independent solutions of the differential equation

1
z

d
dz

“
z
dw
dz

”
+
“
1 − ν2

z2

”
w = 0. (C.51)

In series form,

Jν(z) =
∞X

k=0

(−1)k

k! (ν + k)!
( 1
2z)ν+2k, (C.52)

and Yν(z) is defined by the relation

Yν(z) =
cos νπJν(z) − J−ν(z)

sin νπ
, (C.53)

or by its limiting value if ν is an integer. The function Yν(z) diverges as z−|ν| when
z → 0. As x → ∞

Jν(x) →
r

2
πx

cos(x − 1
2νπ − 1

4π) + O(x−1). (C.54)
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If ν ≡ n is an integer

Jn(−z) = (−1)nJn(z) ; J−n(z) = (−1)nJn(z) ; Y−n(z) = (−1)nYn(z),
(C.55)

Jn(z) =
1
π

Z π

0

dθ cos(z sin θ − nθ). (C.56)

If Cν denotes either Jν or Yν ,

Cν−1(z) + Cν+1(z) =
2ν
z

Cν(z) ; Cν−1(z) − Cν+1(z) = 2
dCν(z)

dz
. (C.57)

For ν = 0 these relations imply

J ′
0(z) = −J1(z). (C.58)

An important integral identity is
Z ∞

0

dk k

Z ∞

0

dR RF (R)Jν(kR)Jν(kr) = F (r) (ν ≥ − 1
2 ), (C.59)

where F (R) is an arbitrary function. If

g(k) =

Z ∞

0

dr rf(r)Jν(kr) (C.60a)

then g is called the Hankel transform of f , and equation (C.59) yields

f(r) =

Z ∞

0

dk kg(k)Jν(kr). (C.60b)

The Hankel transform is defined for any integer ν and all real ν ≥ − 1
2 .

The modified Bessel functions are

Iν(z) = i−νJν(iz) ; Kν(z) = K−ν(z) =
π
2

I−ν(z) − Iν(z)
sin νπ

; (C.61)

the second equation is replaced by its limiting value if ν is an integer. As z → 0,

Iν(z) → 1
ν!

`
1
2z
´ν

(ν ≠ −1,−2, . . .);

Kν(z) → (ν − 1)!
2

`
1
2z
´−ν

(ν > 0);
(C.62)

At large x,

Iν(x) → ex

√
2πx

; Kν(x) →
r

π
2x

e−x. (C.63)

If ν ≡ n is an integer,

In(−z) = (−1)nIn(z) ; In(z) = I−n(z) =
1
π

Z π

0

dθ ez cos θ cos(nθ). (C.64)

If Zν denotes either Iν or eiπνKν ,

Zν−1(z) − Zν+1(z) =
2ν
z

Zν(z) ; Zν−1(z) + Zν+1(z) = 2
dZν(z)

dz
; (C.65)

for ν = 0 these imply

I ′
0(z) = I1(z) ; K′

0(z) = −K1(z). (C.66)
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We shall use the results

ez cos θ = I0(z) + 2
∞X

n=1

In(z) cos nθ =
∞X

n=−∞

In(z) cos nθ; (C.67)

Z ∞

0

dxxµJν(x) = 2µ [ 12 (ν + µ + 3)]!

[ 12 (ν − µ + 3)]!
Re(ν + µ) > −1, Re(µ) < 1

2 . (C.68)

Z ∞

u

dx
x e−µx

(x2 − u2)1−ν

=
2ν−1/2(ν − 1)!√

π
uν+1/2

µν−1/2
Kν+1/2(uµ) (u > 0, Re µ, ν > 0);

(C.69)

Z b

0

dy yν(b2 − y2)ν−3/2Kν(y) = 2ν−3√π(ν − 3
2 )! b2ν−1

×
ˆ
Iν−1( 1

2b)Kν( 1
2b) − Iν( 1

2 b)Kν−1( 1
2 b)
˜

(Re ν > − 1
2 ).

(C.70)

Appendix D: Mechanics
We assume a background in classical mechanics at the advanced undergraduate
level, including basic Hamiltonian mechanics. Useful reference texts include Lan-
dau & Lifshitz (1989), José & Saletan (1998), and Sussman & Wisdom (2001). The
most elegant and mathematical treatment of the subject is found in Arnold (1989).
This appendix contains a brief summary of the concepts employed in this book.

D.1 Single particles

The momentum of a particle is p = mv, where m is its mass and v is its velocity.
Its motion is described by Newton’s second law,

F =
dp
dt

, (D.1)

where F is the force acting on the particle. Thus, if the mass of the particle is
constant,

dv
dt

=
d2x

dt2
=

F

m
. (D.2)

The work done against the force F in moving a particle from x1 to x2 is

W12 = −
Z x2

x1

dx · F, (D.3)

a line integral that is to be taken along the particle’s trajectory from x1 to x2. The
rate at which work is done on the force is

dW
dt

= − d
dt

Z x2(t)

x1

dx · F = −dx
dt

· F = −F · v, (D.4)

evaluated at x2. For a particle of fixed mass,

W12 = −m

Z x2

x1

dx · d2x

dt2
= −m

Z x2

x1

dt
dx
dt

· d2x

dt2
= −m

Z x2

x1

dtv · dv
dt

= 1
2m[v2(x1) − v2(x2)].

(D.5)


